Render fixing FIF-CS 8

The economic screw fixing for all ETICS insulation materials

Screwed fixing of insulation boards

Polystyrene rigid foam boards O35 on perforated sand-lime brick

Applications

- · Fixing of ETICS insulation boards on concrete and masonry
- · Flush installation in all conventional insulation materials

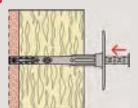
Approvals

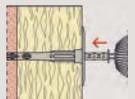
ETA-15/0006, for concrete and masonry

Advantages

- · Compound screw minimises the thermal bridge, thus there are no fixing marks on the facade.
- · Less drill wear and drill time due to minimum installation depth of 35 mm in the substrate.
- $\cdot\;$ With flush installation, the disc tapers to a

Building materials


- · Building material classes A, B, C, D, E
- · Concrete
- · Concrete (weather shell)
- · Building brick
- · Solid sand-lime brick
- · Hollow blocks made from lightweight concrete
- · Vertically perforated brick
- · Perforated sand-lime brick
- · Lightweight aggregate concrete
- · Aerated concrete


- very thin edge, thus providing for optimal retaining of the insulation panel and for application of thin render.
- For insulation material thicknesses up to
- · Standard embedment depth for all building materials.

Functioning

- · The fixing is pushed through the insulation into the drilled hole and is screwed
- · For lengths from 250 mm, at least 180 mm long T25 bits are required. These are not included in the delivery assort-

Technical data

Render fixing FIF-CS 8

FIF-CS 8

		Approval	Drill hole diameter	Min. drill hole depth h ₁	Effect. anchorage depth	Anchor length	Max. fixture thickness t fix	Disc Ø	Sales unit	
	Item No.		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[pcs]	
Item		ETA								
FIF-CS 8/60	534157	•	8	45	35	108	70	60	100	
FIF-CS 8/80	534158	•	8	45	35	128	90	60	100	
FIF-CS 8/100	534159	•	8	45	35	148	110	60	100	
FIF-CS 8/120	534160	•	8	45	35	168	130	60	100	
FIF-CS 8/140	534161	•	8	45	35	188	150	60	100	
FIF-CS 8/160	534162	•	8	45	35	208	170	60	100	
FIF-CS 8/180	534163	•	8	45	35	228	190	60	100	
FIF-CS 8/200	534164	•	8	45	35	248	210	60	100	
FIF-CS 8/220	534165	•	8	45	35	268	230	60	100	
FIF-CS 8/240	534166	•	8	45	35	288	250	60	100	
FIF-CS 8/260	534167	•	8	45	35	308	270	60	100	
FIF-CS 8/280	534168	•	8	45	35	328	290	60	100	
FIF-CS 8/300	534169	•	8	45	35	348	310	60	100	
FIF-CS 8/320	534170	•	8	45	35	368	330	60	100	
FIF-CS 8/340	534171	•	8	45	35	388	350	60	100	

Loads

Render fixing FIF-CS³⁾

 $Highest \ permissible \ loads \ for \ a \ single \ anchor^{1/4)} \ for \ fixing \ of \ external \ thermal \ insulation \ composite \ systems \ with \ rendering.$ For the design the complete assessment ETA-15/0006 has to be considered.

					Concrete and masonry ⁵⁾		
	Brick raw density	Minimum compressive brick strength	Minimum embed- ment depth	Minimum member thickness	Permissi- ble tensile load ³⁾	Minimum spacing ²⁾	Minimum edge distance ²⁾
	ρ	fb	h _{nom}	h _{min}	N _{perm}	S _{min}	c _{min}
Type FIF-CS	[kg/dm³]	[N/mm ²]	[mm]	[mm]	[kN]	[mm]	[mm]
Concrete acc. to EN 206-1:2000	-	C12/15 - C50/60	35 ⁶⁾	100	0.40	100	100
Solid clay bricks Mz according to EN 771-1:2011	≥ 1.8	20	35 ⁶⁾	100	0.40	100	100
Vertically perforated clay bricks HLz according to EN 771-1:2011	≥ 1.0	12	25 ⁷⁾	100	0.20	100	100
Lightweight aggregate concrete LAC according to EN 1520:2011		6	35 ⁶⁾	100	0.20	100	100
Autoclaved aerated concrete blocks AAC according to EN 771-4:2011		4	35 ⁷⁾	100	0.10	100	100

¹⁾ The partial safety factors for material resistance as regulated in the assessment as well as a partial safety factor for load actions of γ_1 = 1,5 are considered.

²⁾ Possible minimum spacing resp. edge distance according to assessment.
³⁾ Plastic anchor for fixing of external thermal insulation composite systems with rendering according to ETAG014. Only tensile wind loads are permitted.
⁴⁾ The given loads are valid for installation and use of fixations in dry base material for temperatures in the substrate up to +24 °C (resp. short term up to +40 °C).

⁵⁾ Restrictions concerning the manufacturer and the permissible hole patterns as well as the web thickness see assessment.

⁶⁾ Drill method hammer drilling.

⁷⁾ Rotary drilling.